Способы шифрования информации реферат

Публикация материалов на других сайтах запрещена. Данная работа и все другие доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта. Отправить свою хорошую работу в базу знаний просто.

В реферате изложены основные принципы построения криптографических систем защиты данных и рассмотрены основные отличия между квантовой и аппаратной криптографией. Приводятся примеры различных способов организации криптографических систем защиты данных, рассматриваются преимущества одних способов над другими с экономической точки зрения, с точки зрения производительности, масштабируемости и надёжности. Так же рассматриваются преимущества, которыми обладает пользователи использующие защищённые методы передачи данных. Сокращения, обозначения и определения, используемые в реферате. Шифрование - это преобразование данных в нечитабельную форму, используя ключи шифрования-расшифровки. Криптография - наука о способах преобразования шифрования информации с целью ее защити от незаконных пользователей разработка шифров.

Криптография и виды шифрования

В ходе выполнения работы были рассмотрены такие вопросы, как история возникновения криптографии, её эволюция, виды шифрования. Мной был проведен обзор существующих алгоритмов шифрования, в результате чего можно отметить, что человечество не стоит на месте и постоянно придумывает различные способы хранения и защиты информации. Вопрос защиты ценной информации путем ее видоизменения, исключающего ее прочтение незнакомым лицом тревожила лучшие человеческие умы еще с самых древних времён.

История шифрования - почти что ровесница истории человеческой речи. Кроме того, изначально письмо само по себе было криптографической системой, поскольку в древних обществах подобным знанием обладали лишь избранные. Священные манускрипты различных древних государств тому примеры. С тех пор как письменность стала широко распространенной, криптография стала становиться вполне самостоятельной наукой. Первые криптографические системы можно встретить уже в начале нашей эпохи.

Например, Юлий Цезарь в своей личной переписке пользовался систематическим шифром, который впоследствии был назван его именем. Серьезное развитие шифровальные системы получили в эпоху первой и второй мировых войн. Начиная с ранней послевоенной поры и по сей момент, появление современных вычислительных аппаратов убыстрило создание и усовершенствование шифровальных методов.

Почему вопрос использования шифровальных методов в вычислительных системах ВС стал в наше время особенно актуальным? Во-первых, расширилась сфера применения компьютерных сетей, таких как World Wide Web, с помощью которых передаются огромные объемы информации госудаpственного, военного, коммерческого и личного характера, не дающего возможности доступа к ней стоpонних лиц.

Во-вторых, появление современных сверхмощных компьютеpов, продвинутых технологий сетевых и нейpонных вычислений делает возможным дискpедитацию шифровальных систем еще вчера считавшихся совершенно безопасными.

История криптографии С самим появлением человеческой цивилизации появилась надобность передачи информации нужным людям так, чтобы она не делалась известной посторонним. Поначалу люди употребляли для трансляции сообщений только голос и жесты. С появлением письменности вопрос обеспечения засекреченности и подлинности транслируемых сообщений стала особенно важным. Шифрование возникло именно как практический предмет, изучающий и разрабатывающий методы шифрования информации, то есть при трансфере сообщений - не скрывающий сам факт передачи, а делающий текст сообщения недоступным для прочтения непосвященными людьми.

Ради этого текст сообщения должен быть записанным таким образом, чтобы с его содержанием не мог ознакомиться ни один человек за исключением самих адресатов. В наши дни этот предмет объединяет способы защиты информации абсолютно разнородного характера, основывающиеся на преобразовании данных по тайным алгоритмам, включая алгоритмы, которые используют различные секретные параметры. Вероятнее всего они родились одновременно с письменностью в IV тысячелетии до нашей эры.

Способы тайной переписки были придуманы независимо во многих древних государствах, таких как Египет, Греция и Япония, но детальный состав криптологии в них сейчас неизвестен. Криптограммы находятся даже в древнее время, хотя из-за применявшейся в древнем мире идеографической письменности в виде стилизованных пиктограмм они были довольно примитивны.

Шумеры, судя по всему, пользовались искусством тайнописи. Археологами был найден ряд глиняных клинописных табличек, в которых первая запись часто замазывалась толстым слоем глины, на котором и производилась вторая запись. Появление подобных странных табличек вполне могло быть обосновано и тайнописью, и утилизацией. Поскольку количество знаков идеографического письма насчитывало более тысячи, их запоминание представляло собой довольно таки трудную задачу - тут становилось не до шифрования.

Однако, коды, появившиеся в одно время со словарями, были очень хорошо знакомы в Вавилоне и Ассирийском государстве, а древние египтяне полльзовались по крайней мере тремя системами шифрования.

С происхождеием фонетического письма письменность сразу же упростилась. В древнесемитском алфавите во II тысячелетии до нашей эры существовало всего лишь около 30 знаков. Ими обозначались согласные, а также некоторые гласные звуки и слоги.

Упрощение письменности вызвало развитие криптографии и шифрования. Даже в книгах Библии мы можем найти примеры шифровок, хотя почти никто их не замечает. В книге пророка Иеремии 22,23 мы читаем: "... Нет, просто иногда священные иудейские манускрипты шифровались обычной заменой.

Вместо первой буквы алфавита писали последнюю, вместо второй - предпоследнюю и так далее. Этот старый способ криптографии называется атбаш. Взглянув на историю его развития как специфической области человеческой жизнедеятельности, можно выделить три основополагающих периода.

Имел дело только с ручными шифрами. Начался в дремучей древности и закончился только в самом конце тридцатых годов двадцатого века. Тайнопись за это время преодолела длительный путь от магического искусства доисторических жрецов до повседневной прикладной профессии работников секретных агентств.

Дальнейший период можно отметить созданием и повсеместным внедрением в практику механических, затем электромеханических и, в самом конце, электронных приборов криптографии, созданием целых сетей зашифрованной связи. Рождением третьего периода развития шифрования обычно принято считать 1976 год, в котором американские математики Диффи и Хеллман изобрели принципиально новый способ организации шифрованной связи, не требующий предварительного обеспечения абонентов тайными ключами - так называемое кодирование с использованием открытого ключа.

В результате этого начали возникать шифровальные системы, основанные на базе способа, изобретенного еще в 40-х годах Шенноном. Он предложил создавать шифр таким образом, чтобы его расшифровка была эквивалентна решению сложной математической задачи, требующей выполнения вычислений, которые превосходили бы возможности современных компьютерных систем.

Этот период развития шифрования характеризуется возникновением абсолютно автоматизированных систем кодированной связи, в которых любой пользователь владеет своим персональным паролем для верификации, хранит его, например, на магнитной карте или где-либо еще, и предъявляет при авторизации в системе, а все остальное происходит автоматически. Криптоанализ Существует громадная пропасть между ручными и компьютерными способами шифрации.

Ручные шифры являются очень разнообразными и могут быть самыми удивительными. Поэтому их взлом гораздо более эффективно производится людьми нежели машинами. Компьютерные шифры более стереотипичны, математически очень сложны и предназначаются для шифрации сообщений довольно таки значительной длины. Разумеется вручную их разгадать даже и не стоит пробовать.

Тем не менее и в этой области криптоаналитики играют ведущую роль, являясь полководцами криптографического нападения, не смотря на то, что само сражение ведется лишь аппаратными и программными средствами. Недооценка этого феномена обусловила фиаско шифров шифровальной машины Энигмы в период Второй мировой войны. Практически всегда являются известными тип шифрации и язык сообщения.

Их вполне могут подсказать алфавит и статистические особенности криптографии. Тем не менее, зачастую информация о языке и разновидности шифра узнается из агентурных источников. Подобная ситуация немного напоминает взлом сейфа: если "взломщик" и не знает заранее конструкции взламываемого сейфа, что выглядит довольно таки маловероятным, он все равно быстро определяет ее по внешнему виду, фирменному логотипу.

В связи с этим неизвестным является лишь ключ, который необходимо разгадать. Сложность заключается в том, что абсолютно так же, как и не все заболевания излечиваются одним и тем же лекарством, а для любого из них существуют свои специфические средства, так и специфические разновидности шифров взламываются только своими методами.

Эти символы нужно взять из заранее фиксированного набора, к примеру, из русского алфавита или из палитры цветов красный, желтый, зеленый. Различные символы могут встречаться в сообщениях с различной периодичностью. В связи с этим объем информации, транслируемый различными символами может быть разным.

В том понимании, которое предложил Шеннон, объем информации определяется усредненным значением чисел возможных вопросов с вариантами ответов ДА и НЕТ для того, чтобы предугадать последующий знак в сообщении. Следует отметить три феномена такого распределения информации. Оно совершенно не зависит от семантики, смысла сообщения, и им можно воспользоваться, даже в ситуации когда точный смысл не вполне ясен.

В нем подразумевается отсутствие зависимости вероятности проявления символов от их предварительной истории. Загодя известна символьная система, в которой транслируется сообщение, то есть язык, метод шифрации. В каких единицах измеряется значение объема информации по Шеннону? Вернее всего ответ на такой вопрос может дать теорема шифрации, утверждающая, что любое сообщение возможно зашифровать символами 0 и 1 таким образом, что полученный объем информации будет сколь угодно близким сверху к Н.

Такая теорема позволяет нам указать и единицу информации - это бит. Необходимо по куску текста определить, что он из себя представляет - сообщение, несущее смысловую нагрузку или просто последовательность из случайных символов.

Ряд методов криптографии приходится на компьютере взламывать банальным перебором ключей, а вручную перепробовать свыше тысячи кусков текста в день просто невозможно, да и скорость перебора очень мала. Допустим нам предстоит перебрать приблизительно один миллиард ключей на компьютере со скоростью одна тысяча ключей в секунду.

На это у нас уйдет приблизительно десять дней. В таком случае мы вполне рискуем попасть в две крайности. В случае если мы будем слишком осторожны в своих оценках, часть неосмысленных фрагментов текста будет определена как сообщения и возвращена человеку. Такая ошибка чаще всего называется "ложной тревогой" или ошибкой первого рода. При объеме подобных ошибок больше чем одна тысяча в день человек, сидящий за компьютером, устанет и может в дальнейшем проверять фрагменты текста невнимательно.

Это означает, что возможно допустить не более одной ошибки подобного рода на 100 000 проверок. В другой крайности, если подойти к проверке невнимательно, то вполне возможно пропустить осмысленный текст и в конце полного перебора его придется снова повторять. Для того, чтобы не рисковать необходимостью повторения всего объема работ, ошибки второго рода, также называемые "пропусками фрагмента", возможно допустить лишь в одном случае из 100 или 1000. Учитывая то, что в нем теоретически могут встречаться только знаки препинания, числа, заглавные и строчные русские буквы, в тексте фрагмента сообщения может встретится не больше половины комплекта кодовой таблицы ASCII.

Это означает, что встретив в фрагменте текста недопустимый знак компьютеру можно определенно заявить о том, что он не является осмысленным - ошибки второго рода при этом практически исключены при хорошо функционирующем канале связи.

Для того, чтобы уменьшить теоретическую возможность "ложных тревог" до обозначенной в предыдущей статье величины, нам необходимо, чтобы фрагмент сообщения состоял не меньше чем из двадцати трех знаков. Вопрос усложняется, в том случае, если используемый код букв не является избыточным, как представление в ASCII русского текста, а содержит в себе ровно столько знаков, сколько их существует в алфавите.

В таком случае нам придется ввести оценку по теоретическим возможностям попадания символов в тексте. Для того, чтобы обеспечить принятые нами возможности ошибок первого и второго рода, при оценивании максимально возможной правдоподобности, нужно проанализировать уже около 100 знаков, а анализ возможности встречи биграмм всего лишь немного уменьшает эту величину.

Поэтому, короткие фрагменты сообщений при большой величине ключа вообще практически невозможно раскодировать однозначно, поскольку проявляющиеся случайные фрагменты текста вполне могут совпасть с имеющими смысл фразами. Такую же задачу необходимо решать и при контроле качества криптографии. В данном случае, правда, возможность ложной тревоги вполне можно увеличить, сделав ее не свыше одной тысячной, при такой же самой возможности игнорирования фрагмента сообщения.

Что позволит нам ограничиваться для проверки текстов лишь двадцатью-тридцатью знаками. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование.

Ключ алгоритма должен сохраняться в секрете обеими сторонами. Алгоритм шифрования выбирается сторонами до начала обмена сообщениями. В настоящее время симметричные шифры - это: Блочные шифры.

Обрабатывают информацию блоками определённой длины обычно 64, 128 бит , применяя к блоку ключ в установленном порядке, как правило, несколькими циклами перемешивания и подстановки, называемыми раундами.

Результатом повторения раундов является лавинный эффект - нарастающая потеря соответствия битов между блоками открытых и зашифрованных данных. Большинство симметричных шифров используют сложную комбинацию большого количества подстановок и перестановок. Как правило, оно создается из ключа выполнением над ним неких операций, в том числе перестановок и подстановок.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Асимметричное шифрование - Криптография

Ознакомление с различными способами шифрования информации. Рассмотрение кодов скачать работу "Шифрование информации" ( реферат). Методы шифрования информации в позднее Средневековье и эпоху Возрождения. Страны реферат [57,7 K], добавлен

В ходе выполнения работы были рассмотрены такие вопросы, как история возникновения криптографии, её эволюция, виды шифрования. Мной был проведен обзор существующих алгоритмов шифрования, в результате чего можно отметить, что человечество не стоит на месте и постоянно придумывает различные способы хранения и защиты информации. Вопрос защиты ценной информации путем ее видоизменения, исключающего ее прочтение незнакомым лицом тревожила лучшие человеческие умы еще с самых древних времён. История шифрования - почти что ровесница истории человеческой речи. Кроме того, изначально письмо само по себе было криптографической системой, поскольку в древних обществах подобным знанием обладали лишь избранные. Священные манускрипты различных древних государств тому примеры. С тех пор как письменность стала широко распространенной, криптография стала становиться вполне самостоятельной наукой. Первые криптографические системы можно встретить уже в начале нашей эпохи. Например, Юлий Цезарь в своей личной переписке пользовался систематическим шифром, который впоследствии был назван его именем. Серьезное развитие шифровальные системы получили в эпоху первой и второй мировых войн.

Основные инструменты и приемы для аутентификации клиента и шифрования информации.

Изучение организационных и технологических аспектов целостности данных. Особенность методов защиты при помощи программных паролей или шифрования информации.

Реферат: Криптография – наиболее надежный способ защиты информации

Заключение Введение: Что такое криптография и где она используется Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом волновала человеческий ум с давних времен. Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации. Почему проблема использования криптографических методов в информационных системах ИС стала в настоящий момент особо актуальна?

Основы шифрования информации

Число сдвига шаг смещения в данном случае переменная величина, функционально зависящая от позиции символа в сообщении. Зависимость может быть разной, например, линейной или квадратичной. Как и шифр Цезаря, относится к моноалфавитной замене. Назван в честь Сэмюэля Морзе. Код усовершенствовал сначала Альфред Вейл добавил буквенные коды , а затем Фридрих Герке. И в таком виде код используется и в наши дни. В этом шифре каждый символ буквы алфавита, цифры от 0 до 9 и некоторые символы пунктуации заменяется последовательностью коротких и длинных звуковых сигналов. Короткий сигнал на бумаге записывается как точка, длинный сигнал как тире. Ниже представлены графические изображения кодов для русских и латинских символов. А также в виде таблицы: Снова зашифруем слово "наука".

.

.

Шифрование информации

.

.

.

.

.

.

ВИДЕО ПО ТЕМЕ: Принципы шифрования и криптографии. Расшифруйте послание!
Похожие публикации